1/89 Interessant getal
[oOO]
... of hoe zowel de rij van Fibonacci als de machten van $11$ gecodeerd zitten in één en hetzelfde getal.
$0{,}01$ | $0{,}01$ | |||||
$0{,}001$ | $0{,}0011$ | |||||
$0{,}0002$ | $0{,}000121$ | |||||
$0{,}00003$ | $0{,}00001331$ | |||||
$0{,}000005$ | $0{,}0000014641$ | |||||
$0{,}0000008$ | $0{,}000000161051$ | |||||
$0{,}00000013$ | $0{,}00000001771561$ | |||||
$0{,}000000021$ | $0{,}0000000019487171$ | |||||
$0{,}0000000034$ | $0{,}000000000214358881$ | |||||
$0{,}00000000055$ | $0{,}00000000002357947691$ | |||||
$0{,}000000000089$ | $0{,}0000000000025937424601$ | |||||
$0{,}0000000000144$ | $0{,}000000000000285311670611$ | |||||
$\vdots$ | $\vdots$ | |||||
$0{,}01123595505\dots$ | $0{,}01123595505\dots$ |
Hierbij is
$0{,}01123595505\dots = \frac{1}{89}$