Oplossingen bij Opeenvolgende getallen die elk de som zijn van drie kwadraten
- 01 Sep, 2023
-
Auteur:
Jan Guichelaar†en Thijs Michels
Oplossingen bij Opeenvolgende getallen die elk de som zijn van drie kwadraten
Opgave 2
$0$ |
$=$ |
$0^2+0^2+0^2$ |
$1$ |
$=$ |
$0^2+0^2+1^2$ |
$2$ |
$=$ |
$0^2+1^2+1^2$ |
$3$ |
$=$ |
$1^2+1^2+1^2$ |
$4$ |
$=$ |
$0^2+0^2+2^2$ |
$5$ |
$=$ |
$0^2+1^2+2^2$ |
$6$ |
$=$ |
$1^2+1^2+2^2$ |
|
|
|
$8$ |
$=$ |
$0^2+2^2+2^2$ |
$9$ |
$=$ |
$0^2+0^2+3^2=1^2+2^2+2^2$ |
$10$ |
$=$ |
$0^2+1^2+3^2$ |
$11$ |
$=$ |
$1^2+1^2+3^2$ |
$12$ |
$=$ |
$2^2+2^2+2^2$ |
$13$ |
$=$ |
$0^2+2^2+3^2$ |
$14$ |
$=$ |
$1^2+2^2+3^2$ |
Opgave 3
$288$ |
$=$ |
$12^2+12^2=4^2+4^2+16^2$ |
$289$ |
$=$ |
$8^2+15^2=1^2+12^2+12^2=8^2+9^2+12^2$ |
$290$ |
$=$ |
$11^2+13^2=1^2+8^2+15^2=3^2+5^2+16^2=4^2+7^2+15^2=5^2+11^2+12^2$ |
$291$ |
$=$ |
$1^2+11^2+13^2=1^2+1^2+17^2=7^2+11^2+11^2$ |
$292$ |
$=$ |
$2^2+12^2+12^2$ |
$293$ |
$=$ |
$2^2+8^2+15^2=1^2+6^2+16^2=4^2+9^2+14^2=7^2+10^2+12^2$ |
$294$ |
$=$ |
$2^2+11^2+13^2=1^2+2^2+17^2=5^2+10^2+13^2=7^2+7^2+14^2$ |